EHAUPM: Efficient High Average-Utility Pattern Mining With Tighter Upper Bounds
نویسندگان
چکیده
منابع مشابه
A New Algorithm for High Average-utility Itemset Mining
High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...
متن کاملTightening Upper Bounds of Utility Values in Utility Mining
Utility mining in data mining has recently been an emerging research issue due to its practical applications. In this paper, with the concept of projection technique, we propose an efficient algorithm for finding high utility itemsets in databases. In particular, an improved upper-bound strategy in the proposed algorithm is designed to further tighten the upper bounds of the utility values for ...
متن کاملHigh-Utility Sequential Pattern Mining with Multiple Minimum Utility Thresholds
High-utility sequential pattern mining is an emerging topic in recent decades and most algorithms were designed to identify the complete set of high-utility sequential patterns under the single minimum utility threshold. In this paper, we first propose a novel framework called high-utility sequential pattern mining with multiple minimum utility thresholds to mine high utility sequential pattern...
متن کاملMining High Average-Utility Itemsets with an Indexed Projection Technique
An itemset in traditional utility mining only considers individual profits and quantities of items in transactions but not its itemset length. The average-utility measure, which is the total utility of an itemset divided by its number of items within it, was then proposed to reveal a better utility effect than the original utility one. However, their proposed approach was based on the principle...
متن کاملEfficient Mining of High Average-Utility Itemsets with Multiple Minimum Thresholds
High average-utility itemsets mining (HAUIM) is a key data mining task, which aims at discovering high average-utility itemsets (HAUIs) by taking itemset length into account in transactional databases. Most of these algorithms only consider a single minimum utility threshold for identifying the HAUIs. In this paper, we address this issue by introducing the task of mining HAUIs with multiple min...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2017
ISSN: 2169-3536
DOI: 10.1109/access.2017.2717438